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Lump scattering on the torus
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Abstract. Head-on collisions between two solitons in the pure CP1 model on a flat torus are investigated
via numerical simulations. The charge-two lumps, written out in terms of Weierstrass’ elliptic ℘-function,
are found to scatter at 90◦. The phenomenon of singularity formation is also seen.

PACS. 11.10.-z Field theory – 02.60.-x Numerical approximation and analysis – 03.50.Kk Other special
classical field theories

1 Introduction

The non-linear O(3) sigma or CP1 model in three-
dimensional space-time is a rich industry of research, both
for its condensed matter applications and as a simple field
theory possessing topological solitons. The energy density
associated with the solitons are lumps localised in space.
The model also appears as a low dimensional analogue of
non-Abelian gauge field theories in (3+1) dimensions, an
example being the increasingly popular Skyrme model of
nuclear physics. In pure mathematics the CP1 solitons are
known as harmonic maps, by itself a long established area
of research.

The classical (2+0)-dimensional CP1 model on the ex-
tended plane or Riemann sphere<2∪{∞} ' S2, where the
solitons are harmonic maps S2 7→ S2 given by any com-
plex holomorphic function, has been amply discussed in
the literature [1,2]. The full time-dependent model ((2+1)
dimensions) is not integrable, so numerical simulations are
needed for studying its dynamics. Regarding collisions,
it is well-known that the lumps on the extended plane
scatter-off at 90◦ with respect to the initial direction of
motion in the centre-of-mass frame [3]. Due to the confor-
mal invariance of the planar model, the lumps are unsta-
ble in the sense that they can shrink indefinitely, leading
to singularity formation in finite time [4]. This instabil-
ity is cured by supplementing the O(3) Lagrangian with
a Skyrme-like and a potential-like term [5].

More recently, attention has also been paid to the CP1

model with square periodic boundary conditions, where
the solitons are harmonic maps T2 7→ S2 (T2 a flat torus)
given by elliptic functions. Physically, this approach looks
more attractive than the one on S2 because the system
is located in a finite volume from the outset. Mathemati-
cally, the model on T2 has the formal advantage of remov-
ing the problem confronted in the extended plane, whose
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non-compactness brings about difficulties to defining the
metric on the moduli space of static soliton solutions.

In reference [6] we tackled the toroidal model by ex-
pressing the soliton fields in terms of Weierstrass’ σ-
function. We found several properties not seen in the usual
planar theory, principally that there are no single-soliton
solutions on the torus and, in the Skyrme version of the
model, that there is no critical speed below which the
skyrmions do not scatter at 90◦.

Our anterior paper [7] resorted to the Weierstrass’ el-
liptic ℘-function to numerically study the CP1 model,
both in its original and Skyrme versions, for systems with
no initial speed. Novel features were unveiled in the topo-
logical charge two sector. Amongst them: • the appearance
of four energy chunks instead of two for certain configura-
tions initially situated in the diagonals of the lattice and
• lump splitting in the Skyrme case for systems initially
located in the central cross of the grid.

Within the framework of the geodesic approximation,
the elliptic ℘-function was employed as well by Speight [8]
to describe pure CP1 lumps. His analysis predicted that
the solitons may shrink and form singularities in finite
time – as their siblings on S2 – and that the solitons should
also scatter at 90◦.

In the present paper we report the results for CP1 lump
scattering obtained by numerically simulating the initial-
value problem given by the Weierstrass’ ℘-function in the
original, unmodified CP1 model. Our results bear out the
predictions referred to in the previous paragraph.

The paper is arranged as follows: In the next section we
lay out the CP1 model with periodic boundary conditions.
In Section 3 the numerical procedure is explained and in
Section 4 the scattering results are discussed. We close the
paper with some concluding remarks including suggestions
for further research.
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2 The CP1 model on the torus

Our model is defined by the Lagrangian density

L =
|∂tW |2 − 2|∂zW |2 − 2|∂z̄W |2

(1 + |W |2)2
(1)

where z = x + iy ∈ T2; z̄ is the complex conjugate
of z. The complex field W obeys the periodic boundary
condition

W [z + (m+ in)L] = W (z), ∀t, (2)

where m,n = 0, 1, 2, ... and L is the size of the torus. The
static soliton solutions are elliptic functions which may be
written as

W = λ℘(z − a) + b, λ, a, b ∈ Z, (3)

being ℘(z) the elliptic function of Weierstrass. Within a
fundamental cell of vertices

(0, 0), (L, 0), (L,L), (0, L),

℘ is expandable as [9]

℘(z) = z−2 + ξ2z
2 + ξ3z

4 + ...+ ξjz
2j−2 + ..., ξj ∈ <.

(4)

This function is of the second order (degree) and so (3)
represents solitons of topological charge 2. As discussed
in [6,7] a distinctive feature of the toroidal model is the
absence of analytical single-soliton solutions. This can be
understood by recalling that the simplest non-trivial el-
liptic function is of order 2. In the language of differen-
tial geometry, the degree of the harmonic maps M 7→ S2

must be greater than genus (M), M a compact and ori-
entable Riemann surface. Since genus (T2) = 1 there are
no unit-degree maps on the torus. However, a periodic
single-soliton ansatz was constructed in [6] using the equa-
tion (5) below with κ = 1 and relaxing the accompanying
selection rule. Note that when M = S2 we have the com-
mon model with standard boundary conditions which do
possess solitons in all homotopy classes; this is because
genus (S2) = 0.

In reference [6] we computed the periodic solitons
through

W =
κ∏
j=1

σ(z − aj)
σ(z − bj)

,
κ∑
j=1

aj =
κ∑
j=1

bj, (5)

with a subroutine that calculates σ(z) numerically. Al-
though σ is pseudo-elliptic, the above ratio subject to the
summation of its zeros (aj) being equal to the summa-
tion of its poles (bj) renders W elliptic. In this paper we
utilise a similar subroutine and then reckon ℘(z) using the
formula [9]:

℘(z) = − d2

dz2
ln[σ(z)]. (6)

The Laurent expansion for σ reads

σ(z) =
∞∑
j=0

cjz
4j+1, cj ∈ <. (7)

Assisted by the useful properties of ℘(z):

℘(z) = ℘(−z), ℘(iz) = −℘(z), ℘(z̄) = ℘(z), (8)

one readily deduces that ℘(z) is real on the boundary and
central cross of the fundamental cell, and purely imaginary
on the borders [10].

The static (or potential) energy density E associated
with the harmonic map W may be read-off from the
Lagrangian (1). Taking into account the identity [10][

d℘(z − a)
dz

]2

= 4℘(z − a)[℘(z − a)2 − ℘2(L/2)], (9)

we have

E = 8|λ|2 |℘(z − a)||℘2(z − a)− ℘2(L/2)|
[1 + |λ℘(z − a) + b|2]2

· (10)

3 Basis numerical procedure

We treat configurations of the form (3) as the initial condi-
tions for our time evolution, studied numerically. The time
derivative of W is calculated from the Lorentz-boosted
field. Our simulations run in the φ-formulation of the
model, whose field equation

∂2
tφ = [−(∂tφ)2 + (∂xφ)2 + (∂yφ)2]φ+ ∂2

xφ+ ∂2
yφ

(11)

follows from the Lagrangian density (1) with the help of

W =
1− φ3

φ1 + iφ2
· (12)

The real scalar field φ = (φ1, φ2, φ3) satisfies φ · φ = 1.
Inverting formula (12) entails

φ =
(
W + W̄

|W |2 + 1
, i
−W + W̄

|W |2 + 1
,
|W |2 − 1
|W |2 + 1

)
· (13)

We compute the series (7) up to the fifth term, the co-
efficients cj being in our case negligibly small for j ≥ 6.
We employ the fourth-order Runge-Kutta method and ap-
proximate the spatial derivatives by finite differences.

The Laplacian is evaluated using the standard nine-
point formula and, to further check our results, a 13-point
recipe is also used. Our results show unsensitiveness to
either technique, thus confirming the reliability of our re-
sults. The discrete model evolves on a 200 × 200 peri-
odic lattice (nx = ny = 200) with spatial and time steps
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δx = δy = 0.02 and δt = 0.005, respectively. The size of
our fundamental, toroidal network is L = nx × δx = 4.

Unavoidable round-off errors gradually shift the fields
away from the constraint φ · φ = 1. So we rescale φ →
φ/
√
φ · φ every few iterations. Each time, just before the

rescaling operation, we evaluate the quantity µ ≡ φ ·φ−1
at each lattice point. Treating the maximum of the ab-
solute value of µ as a measure of the numerical errors,
we find that max|µ| ≈ 10−10. This magnitude is useful as
a guide to determine how reliable a given numerical re-
sult is. Usage of an unsound numerical procedure in the
Runge-Kutta evolution shows itself as a rapid growth of
max|µ|; this also occurs, for instance, when the unstable
energy lumps become too spiky.

4 Results

The initial conditions are then given by equation (3)

W = λ℘(z − a) + b,

where λ is related to the size of the solitons, b determines
their mutual separation and amerely shifts the solution on
the torus. Calling the initial speed v, we boost the above
field and take its time derivative:

W →W (t) = λ℘(z − a) + b(1− vt),
∂tW (t) = −bv, (14)

thus completely defining our initial-value problem. With-
out loss of generality we may take the values of these pa-
rameters according to numerical convenience. Let us set

λ = 1, a = (2.015, 2.015), b = 1

throughout. As depicted in Figure 1, the total energy den-
sity corresponding to our soliton field has the form of two
lumps sitting on the central cross of the cell, symmetri-
cally around its centre.

Consider the situation where the lumps are sent to-
wards one another with a relative initial speed of v = 0.3.
We observe that the solitons gradually expand as they ap-
proach each other; they collide at the centre of the net and
coalesce into a ringish structure, where the solitons are
no longer distinguishable. Here they attain maximum ex-
pansion, i.e., the peak of the total energy density (Emax)
reaches a minimum value. After this process the lumps
get narrower and narrower as they re-emerge at right an-
gles to their initial line of approach. They keep shrinking
while moving away from the centre, in opposite senses.
Some time later they become so spiky that the numerical
code breaks down. This is the well-documented instability
of the O(3) model in two dimensions, where the theory in
conformally invariant. The foregoing events are illustrated
in Figure 2.

The evolution of Emax is shown in the upper half of
Figure 3 for two values of v. The curves are qualitatively
alike, the life of the system being longer the smaller its
initial velocity is.

Initial configuration

Emax=65.7

2

2

Fig. 1. Three dimensional and contour pictures corresponding
to the total energy density of the solitons at t = 0. The initial
speed is v = 0.3.

The kinetic energy remains very small all along except
when the instability takes over. This can be appreciated
from Figure 3 (bottom), where the maximum value of the
kinetic energy density (Kmax) is plotted versus time.

Solitons with no initial velocity remain motionless with
the passing of time (see below, however, the particular case
when b = 0). They too exhibit shrinking and singularity
formation, if at a slower rate than when v 6= 0; the evo-
lution of the total energy density qualitatively resembles
that of Figure 3 (top). As for the kinetic energy density,
it stays very small, at around ≈ 10−7 during the whole
simulation (except when the breadth of the lumps is com-
parable to the lattice spacing which leads to the collapse
of the numerics).

Particularly noteworthy is the case b = 0. The soli-
ton field and its energy distribution are, respectively from
equations (3) and (10),

W = λ℘(z − a),

E = 8|λ|2 |℘(z−a)||℘2(z−a)−℘2(L/2)|
[1+|λ℘(z−a)|2]2 ·

(15)

The global maxima of such energy density are located
along the diagonals of the basic cell [8], i.e., where ℘(z) is
purely imaginary. Given that E in (15) is invariant under
℘→ −℘, it follows from the evenness of ℘ that E has at
least for peaks on the diagonals of the fundamental cell. In
fact, it possesses four peaks (see Fig. 4). This situation in
the topological index-two class is a remarkable feature of
℘-solitons, going beyond the two-lump and annular struc-
tures found in the CP1 model on S2.

Now, the scattering problem when b = 0 is espe-
cial: In order to zoom the lumps towards each other one
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Emax=16.4; t=3

Emax=10.6; t=4.5

(a)

Emax=12.8; t=6

Emax=64.5; t=10

(b)

Fig. 2. (a) The lumps of Figure 1 motion towards each other. They collide and coalesce around the centre of the lattice, where
they expand maximally. (b) Continued. The lumps scatter at 90◦ to the original direction of motion.
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Fig. 3. Evolution of the peak of the total energy density
(Emax) and the peak of the kinetic energy density (Kmax) for
two values of the initial speed.

must boost W according to equation (14), i.e., set b →
b(1− vt). But this is only possible if b 6= 0. And boosting
the parameter a in W is of no avail, for it simply shifts
the system as a whole. Let us then consider systems of the
form (15) started off from rest. It turns out that such con-
figurations shrink quite slowly with time, as illustrated
in the upper graph of Figure 5. From the bottom-right

Lumps at the initial time for the case b=0

Emax=10.94

Fig. 4. Lumps at t = 0 corresponding to the particular case
W = ℘(z − a). The presence of four lumps rather than two in
the charge two sector is an alluring characteristic of ℘-solitons.

plot of Figure 5 we observe that the solitons move away
from the centre and back in along the diagonals of the
grid in breather-like fashion. The kinetic waves emitted
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Fig. 5. Plots corresponding to W = ℘(z − a). We observe a
quasi-stable configuration where the lumps oscillate along the
diagonals of the network in breather-like manner. The initial
velocity is zero.

in the process evolve according to the bottom-left side of
illustration number 5.

Given similar set-ups, CP1 lumps with periodic bound-
ary conditions will usually shrink at a slower rate than
their relatives with standard boundary conditions. This
is because solitons in compact domains as T2 always co-
alesce somehow, and these are configurations with Emax

smaller than when the solitons do not overlap – a situation
achievable to a good approximation in non-compact spaces
like the extended plane. States with b = 0, which corre-
spond to coincident structures that spread themselves all
over the cell (see Fig. 4), have a small Emax which evolves
quasi-stably as depicted in Figure 5. Note that other than
through the parameter b, we can always bring the solitons
to greater overlapping either by increasing the lump size
(λ) or by reducing the torus size (L). This is useful if we
want to run a collision experiment with the same value of
b but different initial values of Emax.

We point out that in reference [7] our configurations
for b = 0 exhibited scattering in the Skyrme version of
the model, even though the initial speed was zero. We
define our Skyrme model on the torus by (compare with
the Lagrangian (1))

L =
|∂tW |2 − 2|∂zW |2 − 2|∂z̄W |2

(1 + |W |2)2

+ θ1
|∂zW |2

(1 + |W |2)4
(|∂tW |2 − |∂zW |2). (16)

In this scheme the four energy peaks move and collide
along the diagonals and scatter at right angles. Let us
emphasise that the extra term in the Lagrangian (16) sta-

bilises the CP1 lumps, i.e., prevents the formation of sin-
gularities.

As pointed out in the introduction, our main results
for ℘-solitons (singularity formation and scattering at 90◦)
conform with prognostications made in the geodesic ap-
proximation treatment of the model [8]. There it was
proved that the moduli space of static 2-lump solutions
is geodesically incomplete and has finite diameter, leading
to infinite lump shrinkage. It was also proved in [8] that
some mathematical constraints oblige the lumps to lie ei-
ther on the central cross, the boundary or the diagonals of
the lattice, implying that only scattering at right angles
should occur.

5 Conclusions

With the help of numerical simulations we have investi-
gated some scattering properties of the (2+1) dimensional
nonlinear O(3) or CP1 model with periodic boundary con-
ditions, expressing the soliton solutions through Weier-
strass’ elliptic ℘-function. Limiting ourselves to the pure
version of the model, we have observed that the lumps
scatter off forming 90◦ with the initial direction of mo-
tion in the centre-of-mass frame. During this process the
lumps grow spiker as time elapses, eventually breaking
down the numerical code. Lack of stability shows as well
for lumps with zero initial speed, but at a slower rate. The
O(3) instability may be understood from the symmetry
of the model under dilation transformations. The above
properties are basically the same as those known from the
familiar model on the Riemann sphere. But some other
phenomena turn out to be quite dissimilar on T2, e.g., the
absence of unit-charge solitons and the presence of four
lumps rather than two in the charge-two topological class.
The non-existence of single-soliton fields on T2 is dictated
by a general property stating that there are no elliptic
functions of order one. The four peaks in the charge-two
sector stem from a notable symmetry property specific to
the ℘-energy density when b = 0 (see Eq. (15)). A con-
figuration of this type is not observed when the fields are
constructed out of the σ-function.

A natural extension of the present work is the study of
℘-lumps with non-zero initial velocity in the Skyrme for-
mat. Skyrmions with such initial conditions have already
shown a thought-provoking scattering and splitting pat-
tern under numerical simulations. Consequently, research
on their evolution under boosting seems compelling. Fur-
ther investigations may involve defining the solitons in
terms of other elliptic functions as those of Jacobi, and
the pseudo-elliptic θ-functions. A classification of solitonic
properties on the torus can only be made after thorough
consideration of the above-mentioned functions. Let us
remind that on S2 no new traits arise from casting the
soliton configurations in different ways. In the topological
charge two class, for example, the following fields behave
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qualitatively alike on the Riemann sphere:

W = z2, z−2,
(z − a)(z − b)
(z − c)(z − d)

·

It is a non-trivial problem to understand the mechanisms
underlying the complicated CP1 dynamics. In the quest
for such understanding, a study of solitonic behaviour on
compact manifolds, especially T2, is certainly quite an ap-
pealing program to pursue.
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